Self-routing autonomous robots by IUE engineers
An autonomous robot that can re-route using artificial intelligence, when it encounters an obstacle, has been developed with the project ...
Course Name |
Materials Science
|
Code
|
Semester
|
Theory
(hour/week) |
Application/Lab
(hour/week) |
Local Credits
|
ECTS
|
ME 202
|
Fall/Spring
|
2
|
2
|
3
|
5
|
Prerequisites |
None
|
|||||
Course Language |
English
|
|||||
Course Type |
Elective
|
|||||
Course Level |
First Cycle
|
|||||
Mode of Delivery | - | |||||
Teaching Methods and Techniques of the Course | Problem SolvingApplication: Experiment / Laboratory / WorkshopLecture / Presentation | |||||
National Occupation Classification | - | |||||
Course Coordinator | ||||||
Course Lecturer(s) | ||||||
Assistant(s) |
Course Objectives | The main objectives of this course are The main objectives of this course are - to establish a basic background for classification and structural and mechanical properties of materials, reaction kinetics and phase transformation principles. | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning Outcomes |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Description | Crystal structures, Mechanical Properties, Diffraction, Polymer Chemistry, Structural defects, Diffusion, Diffraction, Fatigue, Fracture |
|
Core Courses | |
Major Area Courses | ||
Supportive Courses | ||
Media and Management Skills Courses | ||
Transferable Skill Courses |
Week | Subjects | Related Preparation | Learning Outcome |
1 | Classification of Materials, Advanced Materials, Modern Materials’ Needs, Atomic Structure | Materials Science and Engineering, 7E, W.D. Callister, D. G. Rethwisch, John Wiley and Sons, 2011.Chapter 1. Introduction Chapter 2. Atomic Structure and Interatomic Bonding | |
2 | The Faced-Centered Cubic Crystal Structure, The Body-Centered Cubic Crsytal Structure, The Hexagonal Close-Packed Crystal Structure, Ceramic Crystal Structures | Materials Science and Engineering, 7E, W.D. Callister, D. G. Rethwisch, John Wiley and Sons, 2011. Chapter 3. Fundamentals of Crystallography | |
3 | The Diffraction Phenomenon, X-Ray Diffraction and Bragg’s Law, Diffraction Techniques | Materials Science and Engineering, 7E, W.D. Callister, D. G. Rethwisch, John Wiley and Sons, 2011. Chapter 3. Fundamentals of Crystallography | |
4 | Point Defects in Metals, Point Defects in Ceramics, Impurities in Solids | Materials Science and Engineering, 7E, W.D. Callister, D. G. Rethwisch, John Wiley and Sons, 2011. Chapter 4. Imperfections in Solids | |
5 | Diffusion Mechanisms, Steady-State Diffusion, Nonsteady State Diffusion | Materials Science and Engineering, 7E, W.D. Callister, D. G. Rethwisch, John Wiley and Sons, 2011.Chapter 5. Diffusion | |
6 | Mechanical Properties of Metals | Materials Science and Engineering, 7E, W.D. Callister, D. G. Rethwisch, John Wiley and Sons, 2011. Chapter 7. Imperfections in Solids | |
7 | Mechanical Properties of Metals | Materials Science and Engineering, 7E, W.D. Callister, D. G. Rethwisch, John Wiley and Sons, 2011. Chapter 7. Imperfections in Solids | |
8 | Review and Midterm | ||
9 | Dislocations and Plastic Deformation, Characteristic of Disclocations, Slip Systems, Slip in Single Crystals | Materials Science and Engineering, 7E, W.D. Callister, D. G. Rethwisch, John Wiley and Sons, 2011. Chapter 6. Mechanical Properties of Metals | |
10 | Mechanims of Strengthening in Metals, Recrystallization, Grain Growth | Materials Science and Engineering, 7E, W.D. Callister, D. G. Rethwisch, John Wiley and Sons, 2011. Chapter 6. Mechanical Properties of Metals | |
11 | Fundamentals of Fracture, Ductile Fracture, Brittle Fracture, Principles of Fracture Mechanics, Fracture Toughness Testing | Materials Science and Engineering, 7E, W.D. Callister, D. G. Rethwisch, John Wiley and Sons, 2011. Chapter 8. Failure | |
12 | Cyclic Stresses, The S-N Curve, Generalized Creep Behaviour, Data Extrapoliation Methods, Alloys for High-Temperature Use Mechanics, Fracture Toughness Testing | Materials Science and Engineering, 7E, W.D. Callister, D. G. Rethwisch, John Wiley and Sons, 2011. Chapter 8. Failure | |
13 | Iron-Carbon Phase Diagram and Phase Transformation Mechanisms | Materials Science and Engineering, 7E, W.D. Callister, D. G. Rethwisch, John Wiley and Sons, 2011. Chapter 9,10. Phase Diagrams, Phase Transformations in Metals. | |
14 | Polymers, Composite Materials | Materials Science and Engineering, 7E, W.D. Callister, D. G. Rethwisch, John Wiley and Sons, 2011. Chapter 15,16. Polymer Structures, Composites | |
15 | Semester Review | ||
16 | Final |
Course Notes/Textbooks | Materials Science and Engineering, 7E, W.D. Callister, D. G. Rethwisch, John Wiley and Sons, 2011. |
Suggested Readings/Materials | Foundations of Materials Science and Engineering, W.F. Smith, 4E, McGraw-Hill, 2006. |
Semester Activities | Number | Weigthing | LO 1 | LO 2 | LO 3 | LO 4 | LO 5 |
Participation | |||||||
Laboratory / Application | |||||||
Field Work | |||||||
Quizzes / Studio Critiques | |||||||
Portfolio | |||||||
Homework / Assignments |
1
|
20
|
|||||
Presentation / Jury | |||||||
Project | |||||||
Seminar / Workshop | |||||||
Oral Exams | |||||||
Midterm |
1
|
40
|
|||||
Final Exam |
1
|
40
|
|||||
Total |
Weighting of Semester Activities on the Final Grade |
2
|
60
|
Weighting of End-of-Semester Activities on the Final Grade |
1
|
40
|
Total |
Semester Activities | Number | Duration (Hours) | Workload |
---|---|---|---|
Theoretical Course Hours (Including exam week: 16 x total hours) |
16
|
2
|
32
|
Laboratory / Application Hours (Including exam week: '.16.' x total hours) |
16
|
2
|
32
|
Study Hours Out of Class |
14
|
1
|
14
|
Field Work |
0
|
||
Quizzes / Studio Critiques |
-
|
0
|
|
Portfolio |
0
|
||
Homework / Assignments |
2
|
10
|
20
|
Presentation / Jury |
0
|
||
Project |
0
|
||
Seminar / Workshop |
0
|
||
Oral Exam |
0
|
||
Midterms |
1
|
22
|
22
|
Final Exam |
1
|
30
|
30
|
Total |
150
|
#
|
PC Sub | Program Competencies/Outcomes |
* Contribution Level
|
||||
1
|
2
|
3
|
4
|
5
|
|||
1 |
To have knowledge in Mathematics, science, physics knowledge based on mathematics; mathematics with multiple variables, differential equations, statistics, optimization and linear algebra; to be able to use theoretical and applied knowledge in complex engineering problems |
-
|
-
|
-
|
-
|
-
|
|
2 |
To be able to identify, define, formulate, and solve complex mechatronics engineering problems; to be able to select and apply appropriate analysis and modeling methods for this purpose. |
-
|
-
|
-
|
-
|
-
|
|
3 |
To be able to design a complex electromechanical system, process, device or product with sensor, actuator, control, hardware, and software to meet specific requirements under realistic constraints and conditions; to be able to apply modern design methods for this purpose. |
-
|
-
|
-
|
-
|
-
|
|
4 |
To be able to develop, select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in Mechatronics Engineering applications; to be able to use information technologies effectively. |
-
|
-
|
-
|
-
|
-
|
|
5 |
To be able to design, conduct experiments, collect data, analyze and interpret results for investigating Mechatronics Engineering problems. |
-
|
-
|
-
|
-
|
-
|
|
6 |
To be able to work effectively in Mechatronics Engineering disciplinary and multidisciplinary teams; to be able to work individually. |
-
|
-
|
-
|
-
|
-
|
|
7 |
To be able to communicate effectively in Turkish, both in oral and written forms; to be able to author and comprehend written reports, to be able to prepare design and implementation reports, to present effectively, to be able to give and receive clear and comprehensible instructions. |
-
|
-
|
-
|
-
|
-
|
|
8 |
To have knowledge about global and social impact of engineering practices on health, environment, and safety; to have knowledge about contemporary issues as they pertain to engineering; to be aware of the legal ramifications of engineering solutions. |
-
|
-
|
-
|
-
|
-
|
|
9 |
To be aware of ethical behavior, professional and ethical responsibility; information on standards used in engineering applications. |
-
|
-
|
-
|
-
|
-
|
|
10 |
To have knowledge about industrial practices such as project management, risk management and change management; to have awareness of entrepreneurship and innovation; to have knowledge about sustainable development. |
-
|
-
|
-
|
-
|
-
|
|
11 |
Using a foreign language, he collects information about Mechatronics Engineering and communicates with his colleagues. ("European Language Portfolio Global Scale", Level B1) |
-
|
-
|
-
|
-
|
-
|
|
12 |
To be able to use the second foreign language at intermediate level. |
-
|
-
|
-
|
-
|
-
|
|
13 |
To recognize the need for lifelong learning; to be able to access information; to be able to follow developments in science and technology; to be able to relate the knowledge accumulated throughout the human history to Mechatronics Engineering. |
-
|
-
|
-
|
-
|
-
|
*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest
An autonomous robot that can re-route using artificial intelligence, when it encounters an obstacle, has been developed with the project ...
As Izmir University of Economics transforms into a world-class university, it also raises successful young people with global competence.
More..Izmir University of Economics produces qualified knowledge and competent technologies.
More..Izmir University of Economics sees producing social benefit as its reason for existence.
More..