FACULTY OF ENGINEERING

Department of Mechatronics Engineering

ME 202 | Course Introduction and Application Information

Course Name
Materials Science
Code
Semester
Theory
(hour/week)
Application/Lab
(hour/week)
Local Credits
ECTS
ME 202
Fall/Spring
2
2
3
5

Prerequisites
None
Course Language
English
Course Type
Elective
Course Level
First Cycle
Mode of Delivery -
Teaching Methods and Techniques of the Course Problem Solving
Application: Experiment / Laboratory / Workshop
Lecture / Presentation
Course Coordinator
Course Lecturer(s)
Assistant(s)
Course Objectives The main objectives of this course are The main objectives of this course are - to establish a basic background for classification and structural and mechanical properties of materials, reaction kinetics and phase transformation principles.
Learning Outcomes The students who succeeded in this course;
  • Draw crystal structures of materials.
  • Describe the steady and unsteady state diffusion.
  • Determine defects in the crystal structures.
  • Explain the mechanical properties of materials.
  • Define the principles of phase transformations in metals.
Course Description Crystal structures, Mechanical Properties, Diffraction, Polymer Chemistry, Structural defects, Diffusion, Diffraction, Fatigue, Fracture

 



Course Category

Core Courses
Major Area Courses
Supportive Courses
Media and Management Skills Courses
Transferable Skill Courses

 

WEEKLY SUBJECTS AND RELATED PREPARATION STUDIES

Week Subjects Related Preparation
1 Classification of Materials, Advanced Materials, Modern Materials’ Needs, Atomic Structure Materials Science and Engineering, 7E, W.D. Callister, D. G. Rethwisch, John Wiley and Sons, 2011.Chapter 1. Introduction Chapter 2. Atomic Structure and Interatomic Bonding
2 The Faced-Centered Cubic Crystal Structure, The Body-Centered Cubic Crsytal Structure, The Hexagonal Close-Packed Crystal Structure, Ceramic Crystal Structures Materials Science and Engineering, 7E, W.D. Callister, D. G. Rethwisch, John Wiley and Sons, 2011. Chapter 3. Fundamentals of Crystallography
3 The Diffraction Phenomenon, X-Ray Diffraction and Bragg’s Law, Diffraction Techniques Materials Science and Engineering, 7E, W.D. Callister, D. G. Rethwisch, John Wiley and Sons, 2011. Chapter 3. Fundamentals of Crystallography
4 Point Defects in Metals, Point Defects in Ceramics, Impurities in Solids Materials Science and Engineering, 7E, W.D. Callister, D. G. Rethwisch, John Wiley and Sons, 2011. Chapter 4. Imperfections in Solids
5 Diffusion Mechanisms, Steady-State Diffusion, Nonsteady State Diffusion Materials Science and Engineering, 7E, W.D. Callister, D. G. Rethwisch, John Wiley and Sons, 2011.Chapter 5. Diffusion
6 Mechanical Properties of Metals Materials Science and Engineering, 7E, W.D. Callister, D. G. Rethwisch, John Wiley and Sons, 2011. Chapter 7. Imperfections in Solids
7 Mechanical Properties of Metals Materials Science and Engineering, 7E, W.D. Callister, D. G. Rethwisch, John Wiley and Sons, 2011. Chapter 7. Imperfections in Solids
8 Review and Midterm
9 Dislocations and Plastic Deformation, Characteristic of Disclocations, Slip Systems, Slip in Single Crystals Materials Science and Engineering, 7E, W.D. Callister, D. G. Rethwisch, John Wiley and Sons, 2011. Chapter 6. Mechanical Properties of Metals
10 Mechanims of Strengthening in Metals, Recrystallization, Grain Growth Materials Science and Engineering, 7E, W.D. Callister, D. G. Rethwisch, John Wiley and Sons, 2011. Chapter 6. Mechanical Properties of Metals
11 Fundamentals of Fracture, Ductile Fracture, Brittle Fracture, Principles of Fracture Mechanics, Fracture Toughness Testing Materials Science and Engineering, 7E, W.D. Callister, D. G. Rethwisch, John Wiley and Sons, 2011. Chapter 8. Failure
12 Cyclic Stresses, The S-N Curve, Generalized Creep Behaviour, Data Extrapoliation Methods, Alloys for High-Temperature Use Mechanics, Fracture Toughness Testing Materials Science and Engineering, 7E, W.D. Callister, D. G. Rethwisch, John Wiley and Sons, 2011. Chapter 8. Failure
13 Iron-Carbon Phase Diagram and Phase Transformation Mechanisms Materials Science and Engineering, 7E, W.D. Callister, D. G. Rethwisch, John Wiley and Sons, 2011. Chapter 9,10. Phase Diagrams, Phase Transformations in Metals.
14 Polymers, Composite Materials Materials Science and Engineering, 7E, W.D. Callister, D. G. Rethwisch, John Wiley and Sons, 2011. Chapter 15,16. Polymer Structures, Composites
15 Semester Review
16 Final

 

Course Notes/Textbooks

Materials Science and Engineering, 7E, W.D. Callister, D. G. Rethwisch, John Wiley and Sons, 2011.

Suggested Readings/Materials

Foundations of Materials Science and Engineering, W.F. Smith, 4E, McGraw-Hill, 2006.

 

EVALUATION SYSTEM

Semester Activities Number Weigthing
Participation
Laboratory / Application
Field Work
Quizzes / Studio Critiques
Portfolio
Homework / Assignments
1
20
Presentation / Jury
Project
Seminar / Workshop
Oral Exams
Midterm
1
40
Final Exam
1
40
Total

Weighting of Semester Activities on the Final Grade
2
60
Weighting of End-of-Semester Activities on the Final Grade
1
40
Total

ECTS / WORKLOAD TABLE

Semester Activities Number Duration (Hours) Workload
Theoretical Course Hours
(Including exam week: 16 x total hours)
16
2
32
Laboratory / Application Hours
(Including exam week: '.16.' x total hours)
16
2
32
Study Hours Out of Class
14
1
14
Field Work
0
Quizzes / Studio Critiques
-
0
Portfolio
0
Homework / Assignments
2
10
20
Presentation / Jury
0
Project
0
Seminar / Workshop
0
Oral Exam
0
Midterms
1
22
22
Final Exam
1
30
30
    Total
150

 

COURSE LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS RELATIONSHIP

#
Program Competencies/Outcomes
* Contribution Level
1
2
3
4
5
1

To have knowledge in Mathematics, science, physics knowledge based on mathematics; mathematics with multiple variables, differential equations, statistics, optimization and linear algebra; to be able to use theoretical and applied knowledge in complex engineering problems

2

To be able to identify, define, formulate, and solve complex mechatronics engineering problems; to be able to select and apply appropriate analysis and modeling methods for this purpose.

3

To be able to design a complex electromechanical system, process, device or product with sensor, actuator, control, hardware, and software to meet specific requirements under realistic constraints and conditions; to be able to apply modern design methods for this purpose.

4

To be able to develop, select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in Mechatronics Engineering applications; to be able to use information technologies effectively.

5

To be able to design, conduct experiments, collect data, analyze and interpret results for investigating Mechatronics Engineering problems.

6

To be able to work effectively in Mechatronics Engineering disciplinary and multidisciplinary teams; to be able to work individually.

7

To be able to communicate effectively in Turkish, both in oral and written forms; to be able to author and comprehend written reports, to be able to prepare design and implementation reports, to present effectively, to be able to give and receive clear and comprehensible instructions.

8

To have knowledge about global and social impact of engineering practices on health, environment, and safety; to have knowledge about contemporary issues as they pertain to engineering; to be aware of the legal ramifications of engineering solutions.

9

To be aware of ethical behavior, professional and ethical responsibility; information on standards used in engineering applications.

10

To have knowledge about industrial practices such as project management, risk management and change management; to have awareness of entrepreneurship and innovation; to have knowledge about sustainable development.

11

Using a foreign language, he collects information about Mechatronics Engineering and communicates with his colleagues. ("European Language Portfolio Global Scale", Level B1)

12

To be able to use the second foreign language at intermediate level.

13

To recognize the need for lifelong learning; to be able to access information; to be able to follow developments in science and technology; to be able to relate the knowledge accumulated throughout the human history to Mechatronics Engineering.

*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest

 


NEWS |ALL NEWS

Izmir University of Economics
is an establishment of
izto logo
Izmir Chamber of Commerce Health and Education Foundation.
ieu logo

Sakarya Street No:156
35330 Balçova - İzmir / Turkey

kampus izmir

Follow Us

İEU © All rights reserved.