Self-routing autonomous robots by IUE engineers
An autonomous robot that can re-route using artificial intelligence, when it encounters an obstacle, has been developed with the project ...
Course Name |
Automata Theory and Formal Languages
|
Code
|
Semester
|
Theory
(hour/week) |
Application/Lab
(hour/week) |
Local Credits
|
ECTS
|
CE 315
|
Fall/Spring
|
3
|
2
|
4
|
7
|
Prerequisites |
|
|||||||
Course Language |
English
|
|||||||
Course Type |
Elective
|
|||||||
Course Level |
First Cycle
|
|||||||
Mode of Delivery | - | |||||||
Teaching Methods and Techniques of the Course | DiscussionProblem SolvingQ&ACritical feedbackLecture / Presentation | |||||||
National Occupation Classification | - | |||||||
Course Coordinator | ||||||||
Course Lecturer(s) | ||||||||
Assistant(s) |
Course Objectives | The objective of this course is to introduce the theory of automata and formal languages as a further step in abstracting the attention away from any particular kind of programming language. Basic models of computation will be presented which will set the grounds for many branches of computer science such as compiler design and software engineering. At the end of the course, students are expected to deal with all these concepts from an engineering viewpoint. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning Outcomes |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Description | This course discusses the fundamental theories of computer science including regular expressions and context free languages, finite and pushdown automata, Turing machines, computability, undecidability, and complexity of problems. |
|
Core Courses | |
Major Area Courses | ||
Supportive Courses | ||
Media and Management Skills Courses | ||
Transferable Skill Courses |
Week | Subjects | Related Preparation | Learning Outcome |
1 | Deterministic Finite Automata | Chapter 1. Sections 1.1. Introduction to the theory of computation. Michael Sipser. ISBN 053494728X | |
2 | Deterministic Finite Automata | Chapter 1. Sections 1.1. Introduction to the theory of computation. Michael Sipser. ISBN 053494728X | |
3 | Nondeterministic finite automata | Chapter 1. Sections 1.2. Introduction to the theory of computation. Michael Sipser. ISBN 053494728X | |
4 | Nondeterministic finite automata | Chapter 1. Sections 1.2. Introduction to the theory of computation. Michael Sipser. ISBN 053494728X | |
5 | Regular Expressions | Chapter 1. Sections 1.3. Introduction to the theory of computation. Michael Sipser. ISBN 053494728X | |
6 | Context-free Grammars | Chapter 2. Sections 2.1. Introduction to the theory of computation. Michael Sipser. ISBN 053494728X | |
7 | Context-free Grammars | Chapter 2. Sections 2.1. Introduction to the theory of computation. Michael Sipser. ISBN 053494728X | |
8 | Pushdown Automata | Chapter 2. Sections 2.2. Introduction to the theory of computation. Michael Sipser. ISBN 053494728X | |
9 | Pushdown Automata | Chapter 2. Section 2.3. Introduction to the theory of computation. Michael Sipser. ISBN 053494728X | |
10 | Pushdown Automata | Chapter 2. Section, 2.4. Introduction to the theory of computation. Michael Sipser. ISBN 053494728X | |
11 | Turing Machines | Chapter 3. Sections 3.1. Introduction to the theory of computation. Michael Sipser. ISBN 053494728X | |
12 | Turing Machines | Chapter 3. Sections 3.2, 3.3. Introduction to the theory of computation. Michael Sipser. ISBN 053494728X | |
13 | Complexity classes P, NP, and NP complete | Chapter 7. Sections 7.1-- 7.4. Introduction to the theory of computation. Michael Sipser. ISBN 053494728X | |
14 | Decidability and undecidability | Chapter 4. Introduction to the theory of computation. Michael Sipser. ISBN 053494728X | |
15 | Semester Review | ||
16 | Final Exam |
Course Notes/Textbooks | Introduction to the theory of computation, 3rd Edition, Michael Sipser. ISBN 113318779X |
Suggested Readings/Materials | https://ocw.mit.edu/courses/18-404j-theory-of-computation-fall-2020/ |
Semester Activities | Number | Weigthing | LO 1 | LO 2 | LO 3 | LO 4 | LO 5 | LO 6 |
Participation | ||||||||
Laboratory / Application | ||||||||
Field Work | ||||||||
Quizzes / Studio Critiques |
4
|
20
|
||||||
Portfolio | ||||||||
Homework / Assignments |
1
|
10
|
||||||
Presentation / Jury | ||||||||
Project | ||||||||
Seminar / Workshop | ||||||||
Oral Exams | ||||||||
Midterm |
1
|
30
|
||||||
Final Exam |
1
|
40
|
||||||
Total |
Weighting of Semester Activities on the Final Grade |
6
|
60
|
Weighting of End-of-Semester Activities on the Final Grade |
1
|
40
|
Total |
Semester Activities | Number | Duration (Hours) | Workload |
---|---|---|---|
Theoretical Course Hours (Including exam week: 16 x total hours) |
16
|
3
|
48
|
Laboratory / Application Hours (Including exam week: '.16.' x total hours) |
16
|
2
|
32
|
Study Hours Out of Class |
14
|
5
|
70
|
Field Work |
0
|
||
Quizzes / Studio Critiques |
4
|
2.5
|
10
|
Portfolio |
0
|
||
Homework / Assignments |
2
|
5
|
10
|
Presentation / Jury |
0
|
||
Project |
0
|
||
Seminar / Workshop |
0
|
||
Oral Exam |
0
|
||
Midterms |
1
|
20
|
20
|
Final Exam |
1
|
20
|
20
|
Total |
210
|
#
|
PC Sub | Program Competencies/Outcomes |
* Contribution Level
|
||||
1
|
2
|
3
|
4
|
5
|
|||
1 |
To have knowledge in Mathematics, science, physics knowledge based on mathematics; mathematics with multiple variables, differential equations, statistics, optimization and linear algebra; to be able to use theoretical and applied knowledge in complex engineering problems |
-
|
-
|
-
|
-
|
-
|
|
2 |
To be able to identify, define, formulate, and solve complex mechatronics engineering problems; to be able to select and apply appropriate analysis and modeling methods for this purpose. |
-
|
-
|
-
|
-
|
-
|
|
3 |
To be able to design a complex electromechanical system, process, device or product with sensor, actuator, control, hardware, and software to meet specific requirements under realistic constraints and conditions; to be able to apply modern design methods for this purpose. |
-
|
-
|
-
|
-
|
-
|
|
4 |
To be able to develop, select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in Mechatronics Engineering applications; to be able to use information technologies effectively. |
-
|
-
|
-
|
-
|
-
|
|
5 |
To be able to design, conduct experiments, collect data, analyze and interpret results for investigating Mechatronics Engineering problems. |
-
|
-
|
-
|
-
|
-
|
|
6 |
To be able to work effectively in Mechatronics Engineering disciplinary and multidisciplinary teams; to be able to work individually. |
-
|
-
|
-
|
-
|
-
|
|
7 |
To be able to communicate effectively in Turkish, both in oral and written forms; to be able to author and comprehend written reports, to be able to prepare design and implementation reports, to present effectively, to be able to give and receive clear and comprehensible instructions. |
-
|
-
|
-
|
-
|
-
|
|
8 |
To have knowledge about global and social impact of engineering practices on health, environment, and safety; to have knowledge about contemporary issues as they pertain to engineering; to be aware of the legal ramifications of engineering solutions. |
-
|
-
|
-
|
-
|
-
|
|
9 |
To be aware of ethical behavior, professional and ethical responsibility; information on standards used in engineering applications. |
-
|
-
|
-
|
-
|
-
|
|
10 |
To have knowledge about industrial practices such as project management, risk management and change management; to have awareness of entrepreneurship and innovation; to have knowledge about sustainable development. |
-
|
-
|
-
|
-
|
-
|
|
11 |
Using a foreign language, he collects information about Mechatronics Engineering and communicates with his colleagues. ("European Language Portfolio Global Scale", Level B1) |
-
|
-
|
-
|
-
|
-
|
|
12 |
To be able to use the second foreign language at intermediate level. |
-
|
-
|
-
|
-
|
-
|
|
13 |
To recognize the need for lifelong learning; to be able to access information; to be able to follow developments in science and technology; to be able to relate the knowledge accumulated throughout the human history to Mechatronics Engineering. |
-
|
-
|
-
|
-
|
-
|
*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest
An autonomous robot that can re-route using artificial intelligence, when it encounters an obstacle, has been developed with the project ...
As Izmir University of Economics transforms into a world-class university, it also raises successful young people with global competence.
More..Izmir University of Economics produces qualified knowledge and competent technologies.
More..Izmir University of Economics sees producing social benefit as its reason for existence.
More..