FACULTY OF ENGINEERING

Department of Mechatronics Engineering

CE 223 | Course Introduction and Application Information

Course Name
Database Systems
Code
Semester
Theory
(hour/week)
Application/Lab
(hour/week)
Local Credits
ECTS
CE 223
Fall/Spring
3
2
4
7

Prerequisites
None
Course Language
English
Course Type
Elective
Course Level
First Cycle
Mode of Delivery -
Teaching Methods and Techniques of the Course Problem Solving
Application: Experiment / Laboratory / Workshop
Lecture / Presentation
Course Coordinator
Course Lecturer(s)
Assistant(s)
Course Objectives The goal of this course is to give basic knowledge of database systems to a student who intends to be a computer or software engineer. It provides a comprehensive introduction to relational data model and entityrelationship data model as a design tool. Functional and multivalued dependencies in the context of normalization process are described in detail for designing relational database schema. SQL database language and system aspects of SQL such as transaction management, indexing, constraints, triggers and authorization are studied in detail together with laboratory practices illustrating different ways of database programming.
Learning Outcomes The students who succeeded in this course;
  • identify and define the information that is needed to design a database schema for a database application
  • create conceptual and physical database designs for a management information system by drawing the E/R diagram and performing the normalization of relations
  • understand the core terms, concepts, and tools of relational database management systems
  • query a database using SQL
  • implement database applications by properly managing concurrent transactions
  • finetune a database design to improve the performance of applications by the use of beneficial indexes and additional data structures conforming to the characteristics of applications running on them
Course Description Topics related to both database design and database programming are covered.

 



Course Category

Core Courses
Major Area Courses
Supportive Courses
Media and Management Skills Courses
Transferable Skill Courses

 

WEEKLY SUBJECTS AND RELATED PREPARATION STUDIES

Week Subjects Related Preparation
1 Introduction to Database Systems, Relational Data Model, Semi Structured Data Model J. D. Ullman, J. Widom, A First Course In Database Systems, 3/e, PrenticeHall, 2008 (Ch. 1, Ch. 2.1, 2.2, 2.3, Ch. 11.1, 11.2, 11.3)
2 Entity-Relationship Data Model J. D. Ullman, J. Widom, A First Course In Database Systems, 3/e, PrenticeHall, 2008 (Ch. 4.1, 4.2, 4.3, 4.4, 4.5, 4.6)
3 Introduction to Relational Databases, Functional Dependencies J. D. Ullman, J. Widom, A First Course In Database Systems, 3/e, PrenticeHall, 2008 (Ch. 2.4, 3.1, 3.2, 3.3, 3.4, 3.5)
4 Design of Relational Databases, Multivalued Dependencies J. D. Ullman, J. Widom, A First Course In Database Systems, 3/e, PrenticeHall, 2008 (Ch. 3.6, 3.7)
5 Functional Dependencies and Multivalued Dependencies Revisited J. D. Ullman, J. Widom, A First Course In Database Systems, 3/e, PrenticeHall, 2008 (Ch. 2.4, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7)
6 Introduction to SQL (Part I) J. D. Ullman, J. Widom, A First Course In Database Systems, 3/e, PrenticeHall, 2008 (Ch. 6.1, 6.2, 6.3, 6.4.1, 6.4.2)
7 Introduction to SQL (Part II) J. D. Ullman, J. Widom, A First Course In Database Systems, 3/e, PrenticeHall, 2008 (Ch. 5.2, 6.4, 6.5)
8 Midterm
9 Constraints and Triggers J. D. Ullman, J. Widom, A First Course In Database Systems, 3/e, PrenticeHall, 2008 (Ch. 7)
10 SQL Programming: Embedded SQL, PSM (PL/SQL) J. D. Ullman, J. Widom, A First Course In Database Systems, 3/e, PrenticeHall, 2008 (Ch. 9.3, 9.4)
11 SQL Programming: CLI, JDBC, PHP/PEAR J. D. Ullman, J. Widom, A First Course In Database Systems, 3/e, PrenticeHall, 2008 (Ch. 9.1, 9.2, 9.5, 9.6, 9.7)
12 Transactions, Views, Indexes J. D. Ullman, J. Widom, A First Course In Database Systems, 3/e, PrenticeHall, 2008 (Ch. 6.6, 8.1, 8.2, 8.3, 8.4, 8.5)
13 SQL Authorization J. D. Ullman, J. Widom, A First Course In Database Systems, 3/e, PrenticeHall, 2008 (Ch. 10.1)
14 Logical Query Languages (Datalog) and SQL Recursion J. D. Ullman, J. Widom, A First Course In Database Systems, 3/e, PrenticeHall, 2008 (Ch. 5.3, 5.4, 10.2)
15 Review of the Semester
16 Final Exam

 

Course Notes/Textbooks Textbook "J. D. Ullman, J. Widom, A First Course In Database Systems, 3/e, PrenticeHall, 2008" and course slides (Book’s URL: http://wwwdb.stanford.edu/~ullman/fcdb.html)
Suggested Readings/Materials Reference Book: Silberschatz et. al., Database System Concepts, 4th ed., McGrawHill, 2002.

 

EVALUATION SYSTEM

Semester Activities Number Weigthing
Participation
Laboratory / Application
1
15
Field Work
Quizzes / Studio Critiques
1
15
Portfolio
Homework / Assignments
1
Presentation / Jury
Project
Seminar / Workshop
Oral Exams
Midterm
1
30
Final Exam
1
40
Total

Weighting of Semester Activities on the Final Grade
4
60
Weighting of End-of-Semester Activities on the Final Grade
1
40
Total

ECTS / WORKLOAD TABLE

Semester Activities Number Duration (Hours) Workload
Theoretical Course Hours
(Including exam week: 16 x total hours)
16
3
48
Laboratory / Application Hours
(Including exam week: '.16.' x total hours)
16
2
32
Study Hours Out of Class
14
3
42
Field Work
0
Quizzes / Studio Critiques
1
15
15
Portfolio
0
Homework / Assignments
12
2
24
Presentation / Jury
0
Project
0
Seminar / Workshop
0
Oral Exam
0
Midterms
1
21
21
Final Exam
1
28
28
    Total
210

 

COURSE LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS RELATIONSHIP

#
Program Competencies/Outcomes
* Contribution Level
1
2
3
4
5
1

To have knowledge in Mathematics, science, physics knowledge based on mathematics; mathematics with multiple variables, differential equations, statistics, optimization and linear algebra; to be able to use theoretical and applied knowledge in complex engineering problems

2

To be able to identify, define, formulate, and solve complex mechatronics engineering problems; to be able to select and apply appropriate analysis and modeling methods for this purpose.

3

To be able to design a complex electromechanical system, process, device or product with sensor, actuator, control, hardware, and software to meet specific requirements under realistic constraints and conditions; to be able to apply modern design methods for this purpose.

4

To be able to develop, select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in Mechatronics Engineering applications; to be able to use information technologies effectively.

5

To be able to design, conduct experiments, collect data, analyze and interpret results for investigating Mechatronics Engineering problems.

6

To be able to work effectively in Mechatronics Engineering disciplinary and multidisciplinary teams; to be able to work individually.

7

To be able to communicate effectively in Turkish, both in oral and written forms; to be able to author and comprehend written reports, to be able to prepare design and implementation reports, to present effectively, to be able to give and receive clear and comprehensible instructions.

8

To have knowledge about global and social impact of engineering practices on health, environment, and safety; to have knowledge about contemporary issues as they pertain to engineering; to be aware of the legal ramifications of engineering solutions.

9

To be aware of ethical behavior, professional and ethical responsibility; information on standards used in engineering applications.

10

To have knowledge about industrial practices such as project management, risk management and change management; to have awareness of entrepreneurship and innovation; to have knowledge about sustainable development.

11

Using a foreign language, he collects information about Mechatronics Engineering and communicates with his colleagues. ("European Language Portfolio Global Scale", Level B1)

12

To be able to use the second foreign language at intermediate level.

13

To recognize the need for lifelong learning; to be able to access information; to be able to follow developments in science and technology; to be able to relate the knowledge accumulated throughout the human history to Mechatronics Engineering.

*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest

 


NEWS |ALL NEWS

Izmir University of Economics
is an establishment of
izto logo
Izmir Chamber of Commerce Health and Education Foundation.
ieu logo

Sakarya Street No:156
35330 Balçova - İzmir / Turkey

kampus izmir

Follow Us

İEU © All rights reserved.