FACULTY OF ENGINEERING

Department of Mechatronics Engineering

IE 342 | Course Introduction and Application Information

Course Name
Decision Theory
Code
Semester
Theory
(hour/week)
Application/Lab
(hour/week)
Local Credits
ECTS
IE 342
Fall/Spring
3
0
3
5

Prerequisites
  MATH 240 To succeed (To get a grade of at least DD)
Course Language
English
Course Type
Service Course
Course Level
First Cycle
Mode of Delivery -
Teaching Methods and Techniques of the Course Lecture / Presentation
Course Coordinator
Course Lecturer(s)
Assistant(s) -
Course Objectives The objectives of this course are to familiarize students with the introductory knowledge on modelling, analysis and solution approaches for decision making situations under uncertainty, under risk, under certainty and in situations with multiple criteria.
Learning Outcomes The students who succeeded in this course;
  • Will be able to analyze problems faced in certainty, uncertainty and risk environments
  • Will be able to develop decision trees to find rational solutions for problems under uncertainty and risk environments
  • Will be able to calculate the value of information
  • Will be able to use fundamentals of the utility theory
  • Will be able to analyze different solution aspects of multicriteria problems
  • Will be able to use fundamental approaches of goal programming
Course Description This course is one of the basic sections of Operations Research, which studies a rational process for selecting the best of several alternatives. The “goodness” of a selected alternative depends on the quality of the data used in describing the decision situation. From this standpoint, a decisionmaking process can fall into one of three categories. 1. Decisionmaking under uncertainty in which the data cannot be assigned relative weights that represent their degree of relevance in the decision process. 2. Decisionmaking under risk in which the data can be described by probability distributions. 3. Decisionmaking under certainty in which the data are known deterministically. 4. Decision making in multicriteria environment. The main subjects of the course are the decision situation, decision rule, decision trees, information and the cost of additional information, utility theory, multiobjective problems, solution notions for such problems and methods for calculations efficient solutions for multiobjective problems, goal programming and the methods of analyzing solutions for goal programming problems.

 



Course Category

Core Courses
Major Area Courses
Supportive Courses
Media and Management Skills Courses
Transferable Skill Courses

 

WEEKLY SUBJECTS AND RELATED PREPARATION STUDIES

Week Subjects Related Preparation
1 Introduction to the Course. Introduction to Decision Theory. Behavioral decision analysis.
2 Decision making under certainty. Decision making under uncertainty. Decision making under risk
3 Utility Theory. Single attribute utility. Probability-equivalence approach.
4 Interpreting utility functions. Utility functions for nonmonetary attributes.
5 The axioms of utility. Certainty equivalence approach.
6 Attitudes towards risk. Risk premium. Decreasing and constant risk aversion.
7 Midterm
8 Value of information.
9 Expected value of perfect information.
10 Expected value of sample information.
11 Multicriteria Decision Making. Goal Programming.
12 Analytic Hierarchy Process.
13 Multiattribute Utility Theory
14 Outranking relations.
15 Review
16 Review

 

Course Notes/Textbooks Lecture Notes
Suggested Readings/Materials 1. Robert T. Clemen, Terence Reilly, Making Hard Decisions With Decision Tools, Duxbury Thomson Learning, 2001; ISBN13: 9780495015086; ISBN10: 0495015083. 2. Wayne L. Winston, Operations Research. Applications and Algorithms, Duxbury Press, Belmont, California, 1994.

 

EVALUATION SYSTEM

Semester Activities Number Weigthing
Participation
1
5
Laboratory / Application
Field Work
Quizzes / Studio Critiques
1
30
Portfolio
Homework / Assignments
Presentation / Jury
Project
Seminar / Workshop
Oral Exams
Midterm
1
30
Final Exam
1
35
Total

Weighting of Semester Activities on the Final Grade
3
65
Weighting of End-of-Semester Activities on the Final Grade
1
35
Total

ECTS / WORKLOAD TABLE

Semester Activities Number Duration (Hours) Workload
Theoretical Course Hours
(Including exam week: 16 x total hours)
16
3
48
Laboratory / Application Hours
(Including exam week: '.16.' x total hours)
16
0
Study Hours Out of Class
14
3
42
Field Work
0
Quizzes / Studio Critiques
1
20
20
Portfolio
0
Homework / Assignments
0
Presentation / Jury
0
Project
0
Seminar / Workshop
0
Oral Exam
0
Midterms
1
20
20
Final Exam
1
20
20
    Total
150

 

COURSE LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS RELATIONSHIP

#
Program Competencies/Outcomes
* Contribution Level
1
2
3
4
5
1

To have knowledge in Mathematics, science, physics knowledge based on mathematics; mathematics with multiple variables, differential equations, statistics, optimization and linear algebra; to be able to use theoretical and applied knowledge in complex engineering problems

2

To be able to identify, define, formulate, and solve complex mechatronics engineering problems; to be able to select and apply appropriate analysis and modeling methods for this purpose.

3

To be able to design a complex electromechanical system, process, device or product with sensor, actuator, control, hardware, and software to meet specific requirements under realistic constraints and conditions; to be able to apply modern design methods for this purpose.

4

To be able to develop, select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in Mechatronics Engineering applications; to be able to use information technologies effectively.

5

To be able to design, conduct experiments, collect data, analyze and interpret results for investigating Mechatronics Engineering problems.

6

To be able to work effectively in Mechatronics Engineering disciplinary and multidisciplinary teams; to be able to work individually.

7

To be able to communicate effectively in Turkish, both in oral and written forms; to be able to author and comprehend written reports, to be able to prepare design and implementation reports, to present effectively, to be able to give and receive clear and comprehensible instructions.

8

To have knowledge about global and social impact of engineering practices on health, environment, and safety; to have knowledge about contemporary issues as they pertain to engineering; to be aware of the legal ramifications of engineering solutions.

9

To be aware of ethical behavior, professional and ethical responsibility; information on standards used in engineering applications.

10

To have knowledge about industrial practices such as project management, risk management and change management; to have awareness of entrepreneurship and innovation; to have knowledge about sustainable development.

11

Using a foreign language, he collects information about Mechatronics Engineering and communicates with his colleagues. ("European Language Portfolio Global Scale", Level B1)

12

To be able to use the second foreign language at intermediate level.

13

To recognize the need for lifelong learning; to be able to access information; to be able to follow developments in science and technology; to be able to relate the knowledge accumulated throughout the human history to Mechatronics Engineering.

*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest

 


NEWS |ALL NEWS

Izmir University of Economics
is an establishment of
izto logo
Izmir Chamber of Commerce Health and Education Foundation.
ieu logo

Sakarya Street No:156
35330 Balçova - İzmir / Turkey

kampus izmir

Follow Us

İEU © All rights reserved.